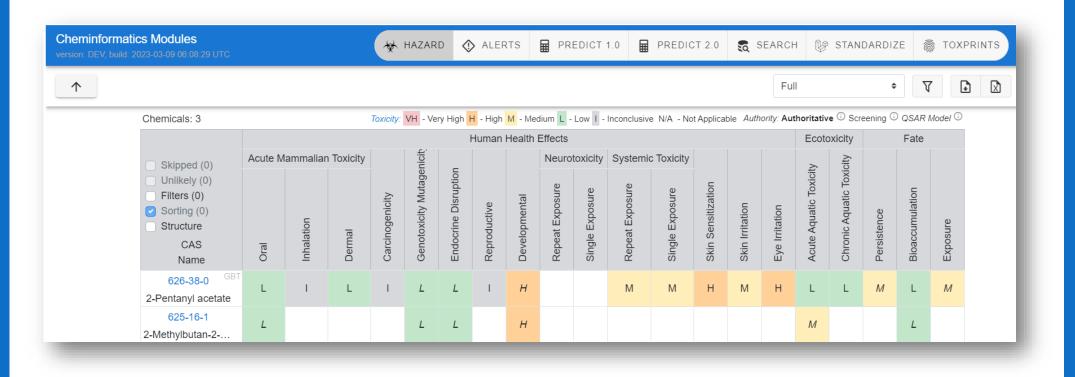


Cheminformatics Analysis Modules

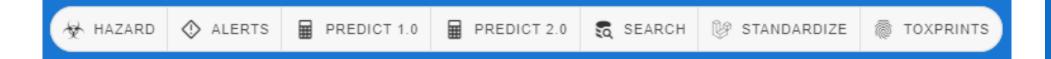
NAMs Training Workshop RTP, NC April 24– 25, 2024 Dr. Antony Williams

Purpose of the Cheminformatics Modules


• PoCs are research software builds to **prove approaches** before moving into production software environments

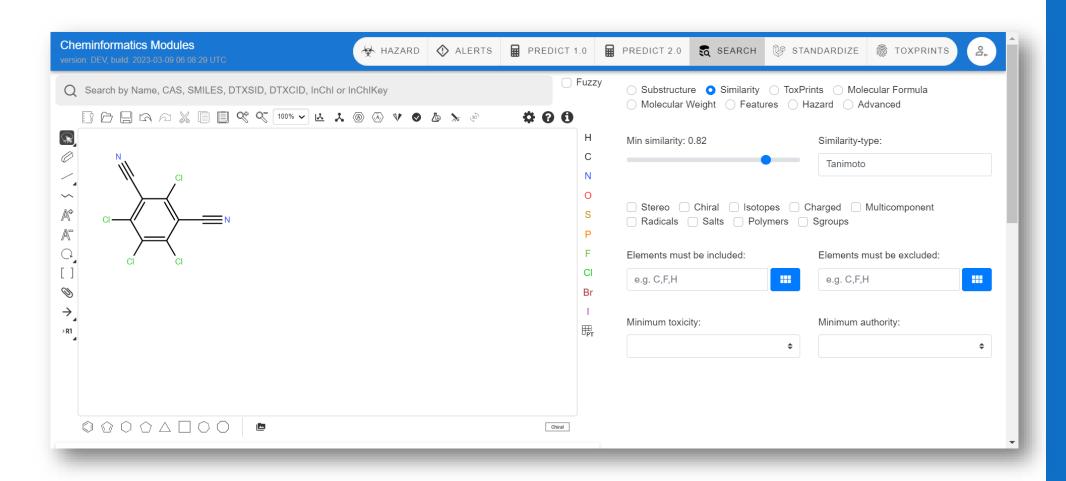
 Assemble data, develop data model(s), test user interface approaches, work with test user base to garner feedback

 PoCs are internal access data refreshes and application updates can be more frequent


Accessing the Cheminformatics Analysis Modules

<u>https://www.epa.gov/comptox-tools/cheminformatics</u>

Purpose of the Cheminformatics Modules


- The Cheminformatics Modules includes:
 - Hazard Comparison
 - Batch QSAR Predictions
 - Structure/Substructure/Similarity Search
 - ToxPrints

• These modules allow for user testing and feedback and provide inspiration for implementation into production systems

Initiated in Cheminformatics Modules

• Structure/substructure/similarity search module

Reimplemented in the Dashboard

• A subset of functionality was moved to the Dashboard

CompTox Chemicals Dashboard v2.4.1 Home Search • Lists • About •	Tools -		Submit Comments	Search all data 🗸 🗸 4
Q Chlorothalonil		Fuzzy Sea	arch Type	
	V 🛛 🐌 🔉 🔍 🗘	ЮО н	Substructure Similarity	
			ments must be included:	Elements must be excluded:
		N	.g. C,F,H	e.g. C,F,H
		0	Toxval Data Only	
		S		
		P F Sea	reh	
Q		F Sea		
		Br		
		1		
\rightarrow		⊞ ₽T		
>R1				
0		[abs]		
[T]				
Chlorothalonil	1897-45-6	DTXSID0020319		

Not all PoCs are Public: Work-In-Progress

• Safety Module

↑ Search o	hemical by	Name, CA	SRN or DTXS													Show	/ Structure	Full	\$	•	Ŵ	P97 🗍
Chemical	Safety	Properties	Signal	Explosive	Flammable	Oxidizers	Compressed Gas	Corrosive	Acute Toxicity	Irritant	Health Hazard	Env. Hazard	NFPA 704	Fire Fighting	Accidental Release Measures	Handling and Storage	Stability and Reactivity	Transport Information	Regulatory Information	Other Safety Information	RQ Category	RQ in pounds (kilograms)
AIGBT													40									
71-43-2 Benzene	Ω	⇒	Danger							()	٠	A state of the		i	i	i	i	i	i	i	A	10 (4.5
AIGBT													4									
75-01-4 Vinyl chloride	\Box	\bigtriangleup	Danger				\diamondsuit			(!)			2 2	i	i	i	i	i	i	i		
25265-71-8 GBT Dipropylene glycol													v									
57-55-6 AIGBT 1,2-Propylene glycol	\Box	\bigtriangleup											010	i	i	i	i		i	i		
111-46-6 GBTM Diethylene glycol	\Box	\bigtriangleup	Danger							(!)			10	i	i	i	i	i	i	i		
111-76-2 AIGBT 2-Butoxyethanol	\bigcirc	\bigtriangleup	Danger							()			320	i	i	i	i	i	i	i		
115-11-7 GBTM sobutene	\bigcirc	\bigtriangleup	Danger				\diamond			<u>(</u>)			241	i	i	i	i	i	i	i		
141-32-2 GBTM Butyl acrylate	\bigcirc	Δ	Danger							(!)			322	i	i	i	i	i	i	i		
1322-13-0 Ethylhexyl acrylate	\Box																					

judgment in use of the information. The results do not indicate EPA's position on the use or regulation of these chemicals

Not all PoCs are Public: Work-In-Progress

Analytical Methods and Open Spectral Database

78 Results for "vinyl chloride"

(Preferred) Name: Vinyl chloride DTXSID: <u>DTXSID8021434</u> CASRN: 75-01-4 InChIKey: BZHJMEDXRYGGRV-UHFFFAOYSA-N Molecular Formula: C2H3Cl Mass: 61.99233

Download Results

✓Display Single Point Spectra

Include MS-Ready r	methods 🕜			
<u>All Results (78)</u>	<u>Methods (4</u>	<u>4)</u> <u>Spectra</u>	a <u> (28)</u>	<u>Fact Sheets (6)</u>
Methodology ↑	Source	Method #	#	Information
▽				
GC	USEPA	EPA-TO-17	41	Determination of VOCs residues in air by GC.
GC/ELCD; GC/MS	NEMI	SMC-6200	66	Determination of Organohalides residues in water (ground, waste,
GC/ELCD; GC/PID	NEMI	EPA-502.2	60	Determination of VOCs residues in water (drinking, raw) by GC/ELC
GC/FID	OSHA	OSHA-75	1	Determination of Vinyl chloride residues in air by GC/FID with a LC
GC/FID	<u>OSHA</u>	OSHA-4	1	Determination of Vinyl Chloride residues in air by GC/FID with a LC
GC/MS	USEPA	EPA-601	29	Determination of Halocarbons residues in municipal and industrial
GC/MS	USEPA	EPA-624.1	144	Determination of Purgeable organic pollutants residues in water (r
GC/MS	USEPA	EPA-1624B	33	Determination of VOCs residues in water (municipal waste, industr
GC/MS	USEPA	EPA-8260D	179	Determination of VOCs residues in various air sampling trapping n
GC/MS	USEPA	EPA-8261	106	Determination of VOCs residues in water, soil, sediment, sludge, o
GC/MS	Agilent	5994-3834	61	Determination of VOCs residues in water by GC/MS.
GC/MS	Agilent	5991-6539	48	Determination of VOCs residues in water by GC/MS with a LOD of
GC/MS	USGS	5-B12	102	Determination of VOCs residues in water by GC/MS.
GC/MS	USEPA	CTM-028	35	Determination of VOCs residues in stationary source emissions by
GC/MS	NEMI	USGS-0-3115-83	27	Determination of VOCs residues in water by GC/MS with a LOD of

Volatile Organic Compounds in Water by Purge and Trap Capillary Column Gas Chromatography with Photoionization and Electrolytic Conductivity Detectors in Series

Author: USEPA Mecus/Analyte: VOC Initation: LOD of 0.01-2.2ppb Substances (60).(grid) Substances (60).(table) DE Viewer Substances (60).(grid) Substances (60).(table) METHOD 502.2: VOLATILE ORGANIC COMPOUNDS IN WATER BY PURGE AND TRAP CAPILLARY COLUMN GAS CHROMATOGRAPHY WITH PHOTOIONIZATION AND ELECTROLYTIC CONDUCTIVITY DETECTORS IN SERIES Revision 2.1 Edited by J.W. Munch (1995)

Interested in a demo?

• Cheminformatics Modules:

https://www.epa.gov/comptox-tools/cheminformatics

 Contact for follow up demo: Antony Williams williams.antony@epa.gov