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Take home points

* We can use low-cost sensor networks and mobile monitoring
to investigate local-scale variations in air pollution

* Low-cost sensors need to be carefully calibrated for local
conditions

* Mobile monitoring enables detailed investigations of source
impacts at the urban scale

Carnegie Mellon University



Most air quality monitoring in the US is to check
compliance with the Clean Air Act
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Most air quality monitoring in the US is to check
compliance with the Clean Air Act
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Most air quality monitoring in the US is to check
compliance with the Clean Air Act
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There is clear
spatial variability
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How much does air pollution vary at the
neighborhood level?
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Point source and

Stationary sampling sites near roadway plumes
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Urban areas have an air pollution “hump” with

spikes on top of it
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Urban areas have an air pollution “hump” with

spikes on top of it
Primary PM, ; Concentrations
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How can novel sampling methods be used to
qguantify neighborhood scale spatial variations?
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Real-Time Affordable Multi-
Pollutant Sensor (RAMP)
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Low-cost gas sensors are cross sensitive to T,
RH, and other pollutants
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Low-cost gas sensors are cross sensitive to T,
RH, and other pollutants

Low-cost PM, . sensors can be influenced by RH, T,
particle composition, and particle morphology
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Low-cost gas sensors are cross sensitive to T,
RH, and other pollutants

Low-cost PM, . sensors can be influenced by RH, T,
particle composition, and particle morphology

Laboratory calibrations are insufficient because we
cannot cover the entire relevant phase space

Zimmerman et al, AMT, 2018
Giordano et al, J. Aerosol Sci., 2021
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Raw Purple Air output shows humidity bias
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Humidity correction removes the bias; hourly data are still

(as-reported) [pglm?’]
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Mean absolute error (ug m3)

4

3.5* 1hr:3-4 pugm3

3

2.5
* 1day:2-2.5 ug m3
2

1.5

0L||||||| I I

‘ 1 week: 1.5 ug m3

month: 1 ug m3

1234567 50 100

Averaging Time [days]

150

200 250 300 I\/I%?icr)]gs et al, AS&T, 2020

Eilenberg et al, JESEE, 2020



Calibrations allow us to resolve differences between

Zimmerman et al, AAQR, 2019
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The low-cost sensor network lets us examine details
of certain locations
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PM, . spatial variability is largely driven by emissions
spikes
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Fraction of Measurements

PM, . spatial variability is largely driven by emissions
spikes
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We quantified the impacts of industrial emissions
and urban sources

All Sites
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We quantified the impacts of industrial emissions
and urban sources
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Mobile sampling with an Aerosol Mass
Spectrometer (AMS) . —
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Cooking sources generate large plumes

Restaurant row
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PM composition helps inform sources
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What are these particles made from?
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Hour of day

Primary OA from vehicle exhaust

Primary OA from cooking

Secondary OA formed upon processing of
primary OA

Shah et al, ACP, 2018



Source-resolved PM varies spatially

Carnegie Mellon University Gu et al ES&T 2018



Cooking hotspots are more intense than traffic hotspots

Carnegie Mellon University Gu et al ES&T 2018



Restaurant and traffic lead to an increase of 2 ug

m= to PM, concentration in Pittsburgh
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We are also applying moblle sampli

CAPS

Center for Atmospheric Particle Studies

f . t .
Mt Nap,
X e - C12H12_Concentration{pig/m?)
N N
s ] 0.00001 - 0.00074 )
g
< < 4
v >
: Z Berkeley Hills l:l <O- 75 S
S a3 S
f\\ = (\\0\3(
)
e e 0.75-0.95
(‘
Ot
Emsworth Slvd
z @ 0.95-1.14
Bellevue 1361 ft
4 Main.St
% Highland Pa
2 2
?‘p §
R West Park ‘9»/9 @ 2
%
c\ever Rd ) i
McKees Roths %, Lawrenceville )
Spring Hill ]
Sheraden Ppc e EEID erty
9. L
Yo, [ Tlint Breeze
20 —in
. H
t W]
1] i .
ISIE] i i
P gh s, Squirrel Hill
&
Q7®
Pbells run Rq ™
19
O
g @ «
& Crane Ave ‘@
= N
] o
= =) y
W
2 . aq\é & y
Carnegie «® § 885 y
cee®
© \
\ \ N
Dormont 1
Club at
Nevillewood - X Baldwin
X
N
7/70/775 #, Bo‘qé\e\\ /17/).“
a S —
Pt
0 ood
eci C M ll U a.pa.gov, Esn HERE Garmm SafeGraph, GeoTechnologies, Ig€, METV
SA, USGS, EPA, INPS, US|
arneg ie Vle OIl n1vers1ty N P
‘?’Ospecr,?” S




—Kids play basketball in.the
shadow of a petrochemical

m tlinlﬁﬁ AI rihuri m i "
. s g



https://readersupportednews.org

Urban areas have an air pollution “hump” with

spikes on top of it
Primary PM, ; Concentrations
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Demographics and PM, . are correlated
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People living
near urban
emissions

sources are
more likely to
be People of
Color
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People living
near urban
emissions

sources are
more likely to
be People of
Color
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EJ: Race-ethnicity is a stronger factor than income
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EJ: Race-ethnicity is a stronger factor than income
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EJ: Race-ethnicity is a stronger factor than income

A = = Total PM; s 0 Total PM- £
107 all populaiton mean ™ Cooking Org B Black Carbon
B Traffic Org Other PM- 5
= *Taagg TR
£
=7
Z .-
W
7
=
w47
[ |
=
o
2_
ﬂ_ ____________________

ELLMH |[ELLMH|ELLMH|ELLMH |[ELLMH
White | Black | Asian |Hispanic| POC

Household Annual Income Groups
EL : <15k, L :15-50k, M : 50-100k, H: >100k

Carnegie Mellon University



There is strong NO, environmental injustice in Allegheny
County

A risk-based model to assess environmental justice
and coronary heart disease burden from traffic-
related air pollutants

James P. Fabisiak &, Erica M. Jackson, LUAnn L. Brink & Albert A. Presto
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Take home points

We can use low-cost sensor networks and mobile monitoring to
investigate local-scale variations in air pollution

* Both allow for higher spatial density of sampling than regulatory
monitoring

Low-cost sensors need to be carefully calibrated for local conditions
» After calibration, data are usable to quantify local-scale variations

Mobile monitoring enables detailed investigations of source
impacts at the urban scale

* Enables detailed mapping of source impacts at the neighborhood scale

Carnegie Mellon University
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